amjs澳金沙门欢迎您
个人信息
  • 姓名:赵宪钟
  • 部门:基础数学系
  • 职称:教授
  • 荣誉:博士生导师
  • 电子邮件:zhaoxz@nwu.edu.cn
  • 研究方向:代数学和理论计算机科学

 

个人简介

赵宪钟教授(amjs澳金沙门欢迎您博士生导师) 1961年10月生于陕西省澄城县1982 年1月在陕西师范大学本科毕业并留校任助教; 1985年9月至1988年6月在amjs澳金沙门欢迎您攻读硕士学位,后即在amjs澳金沙门欢迎您任教至今,长期从事代数学与理论计算机科学的教学与研究。其间,于1992年9月至1993年7月在兰州大学数学系访问; 2000年6月在中山大学获得博士学位(半群代数理论方向);2003年被遴选为amjs澳金沙门欢迎您基础数学博士授权点的首批博士生导师;2002年6月至2009年5月曾经担任amjs澳金沙门欢迎您数学系副系主任(主管科研与研究生教育工作)。2009年112014年12月兼任江西师范大学特聘教授。现任美国杂志《数学评论》的评论员和杂志《纯粹与应用数学》的编委。

赵宪钟80年代以来长期从事代数学与理论机算计科学的教学与研究。他在群、半群、半环和Tropical代数的代数理论的研究领域内获得了系列的成果, 并以论文的形式国内外著名刊物《J. Algebra》,《Commun. Algebra》,《Algebra univers.》,《Fund Math》,《Period. Math.》,《Semigroup Forum》,《Theoretical Computer Science》,《Inform. Sci.》等上公开发表60余篇,其中40篇被SCI收录。他受邀访问过美国,韩国,塞尔维亚,香港等国家和地区的一些大学。近年来,他先后主持或参与了国家与省部级项目10项,其中主持了3项国家自然科学基金。已培养出70多名博士与硕士,正在培养的5名博士研究生与7名硕士研究生 其中9人任职副教授和4人任职教授,5人担任学院院长或副院长

 

项目、成果、论文、奖励

  

  • 1.主要课题

      

[1] 国家自然科学基金面上项目,11971383Tropical 矩阵代数的半群和半环理论与2-闭置换群的研究,2020.01-2023.12,52万元,在研,主持。

[2] 国家自然科学基金面上项目,11571278,Tropical矩阵半群和Tropical矩阵群,2016.01-2019.12,50万元,已结题,主持。

[3] 国家自然科学基金地区项目,11261021,AI-半环簇与 Conway 半环簇的究,2013.01-2016.12, 45万元,已结题,主持。(本项目依托单位为江西师范大学,不是amjs澳金沙门欢迎您。)

[4]  江西省自然科学基金项目,20142BAB201002,Burnside AI-半环簇的研究,2013.09-2015.12,3万元,已结题,主持。(本项目依托单位为江西师范大学,不是amjs澳金沙门欢迎您。)

[5] 江西省自然科学基金项目,2010GZS0093,关于几类半环的研究,2011.01-2012.12,3万元,已结题、主持。(本项目依托单位为江西师范大学,不是amjs澳金沙门欢迎您。)

[6] 国家自然科学基金,10471112,半群代数理论,2005.01-2007.12,20万元、已结题、第一参与人。

[7] 陕西省自然科学基础研究计划项目,2005A15,关于几类Conway半环,2006.01-2007.12,1.5万元,已结题,主持。

[8] 陕西省自然科学基础研究计划项目,2003A10,半环的代数理论,2004.01-2005.12,1.5万元,已结题,主持。

 

  • 2.主要论文成果    

      

  • [1] Zhao XZ, Sen MK, On several classes of orthodox Г-semigroups. Jour. Pure Math. (印度),  (1997) Vol. 14: 1-25.

  • [2] Pastijn F, Zhao XZ, Greens D-relation for the multiplicative reduct of an idempotent semiring.  Archivum Math. (捷克、Brno), (2000) Vol. 36: 7-93.

  • [3] Zhao XZ, Shum KP, Guo YQ, L-subvarieties of the  variety of idempotent semirings. Algebra Univers., (2001)  Vol. 46: 7-96 .SCI

  • [4] Zhao XZ, Idempotent semirings with a commutative additive reduct. Semigroup Forum , (2002) Vol. 64: 289-96 .SCI

  • [5] Zhao XZ, Guo YQ, Shum KP, D-subvariety of the variety of idempotent semirings. Algebra Colloq., (2002) Vol. 9: 1-28.SCI

  • [6] Zhao XZ, Guo YQ and Shum KP, Sturdy frame of type (2,2) algebras with appli-cation to semirings.  Fund. Math. , (2003) Vol. 179: 69-81.SCI

  • [7] Zhao XZ, Locally closed semirings and iteration semirings. Monatsh.Math.,  (2005) Vol.144: 157-67.SCI

  • [8] Feng F, Zhao XZ, Jun YB,  *-μ-semirings and *-λ-semirings. Theoretical Computer Science, (2005) Vol.347: 423-431.SCI

  • [9] Ghosh S, Pastijn F, Zhao XZ, Varieties generated by ordered bands I. Order, (2005)Vol.22: 109-128.SCI

  • [10] Pastijn F, Zhao XZ, Varieties of idempotent semirings with  commutative addition. Algebra Univers., (2005) Vol.54: 301-21.SCI

  • [11] Feng F, Jun YB, Zhao XZ, On *–λ-semirings. Information Sciences, (2007) Vol.177: 5012-5023.SCI

  • [12] Feng F, Jun YB, Zhao XZ, Soft semirings. Computers and  Mathematics with Applications(2008) Vol.56: 2621-2628.SCI

  • [13] Zhao XZ, Jun YB, Ren F, The semiring of matrices over a finite chainInformation Sciences, (2008) Vol.178: 3443-3450.SCI

  • [14] Kong XJ, Zhao XZ, A new construction for regular semigroups with quasi-ideal orthodox transversals. J. Aust. Math. Soc. (2009)Vol.86: 177-187.SCI

  • [15] Chen W, Zhao XZ, The Structure of Idempotent Residuated Chains. Czechoslovak Math.J., (2009)Vol.59(134): 453-479.SCI

  • [16] Chen W, Zhao XZ, Guo XJ, Conical residuated lattice-ordered idempotent monoids. Semigroup Forum, (2009) Vol.79: 244--278.SCI

  • [17] Shao Y, Zhao XZ, Locally inverse semigroups with inverse transversals. Jouranl of Mathematical Research and Exposition, (2009) Vol.29(4): 599-606.

  • [18] Shao Y, Zhao XZ, Partial orders on right inverse semigroups, Chinese Quarterly Journal of Mathematics, (2009)Vol. 24(2): 194-199.

  • [19] 邵勇, 赵宪钟,半格序Clifford半群,数学进展,2010年第1  59-63.

  • [20] Chen YZ, Zhao XZ, Yang L, On n × n Matrices over a Finite Distributive Lattice. Linear and Multilinear Algebras, (2012)Vol. 60(2): 131-147.SCI

  • [21] Tian J, Zhao XZ, Representations of commutative asynchronous automata. J.Comput.Syst. Sci., (2012)Vol.78(2): 504 -516.SCI

  • [22] Chen YZ, Zhao XZ, On Linear Operators strongly preserving invariants of Boolean Matrices. Czechoslovak Mathematical Journal, (2012)Vol. 62: 169-186.SCI

  • [23] Shao Y, Zhao XZ, Semirings which are distributive lattice of M-rectangular divided semirings. Algebra Colloquium, (2013)Vol.20(2): 243-250.SCI

  • [24] Chen YZ, Zhao XZ, Guo XJ, On several classes of additively non-regular C-semirings. Publ. Math. Debrecen, (2013)Vol. 83 (4), 517-536.SCI

  • [25] Gan AP, Zhao XZ, Glonal Determinism of Clifford semigroups. J. Aust. Math. Soc., (2014)Vol.97(1): 63-77.

  • [26] Fu YY, Zhao XZ, The Closed subsemigroup of Clifford semigroup , Communications in Mathematical Research,  (2014)Vol. 30(2), 97—105.

  • [27] Xu H, Tian J, Zhao XZ, Monoid-matrix type automata. Theoretical Computer Science, (2014)Vol.520: 1-10. SCI

  • [28] Chen YZ, Zhao XZ, On Decompositions of Matrices over Distributive Lattices. Journal of Applied Mathematics (2014), Vol. 2014, Article ID 202075, 10 pages

  • [29] Ren MM, Zhao XZ, On free Burnside ai-semirings. Semigroup Forum, (2015)Vol.90(1):174-183SCI

  • [30] Chen YZ, Zhao XZ, On upper triangular nonnegative matricesCzechoslovak Mathematical Journal, (2015)Vol. 65 (140) , 1–20. SCI

  • [31] Gan AP,  Zhao XZ, Ren MM, Global determinism of semigroups having regular globals, Period Math Hung, (2016) Vol.72:12–22. SCI

  • [32] Gan AP,  Zhao XZ, Shao Y, Globals of idempotent semigroups, Communications in Algebra,  (2016)Vol.44: 3743—766. SCI

  • [33]  Ren MM,  Zhao XZ, Shao Y, On a variety of Burnside ai-semirings satisfying xn x, Semigroup Forum, (2016) Vol.93:501–515. SCI

  • [34] Tian J, Shao Y, Zhao XZ, Out Subword-Free Languages and Its Subclasses, International Journal of Foundations of Computer Science, (2016) Vol. 27(3) : 305–326. SCI

  • [35]  Ren MM, Zhao XZ, The varieties of semilattice-ordered semigroups satisfyingx3 x and xy yx, Period Math Hung, (2016) 72:158–170. SCI

  • [36] Yu BM,  Zhao XZ,  Gan AP, Global determinism of idempotent semigroups, Communications in Algebra, (2017) ( Online) DOI: 10.1080/00927872.2017.1319474

  • [37] Zhao XZ,  Gan AP,  Yu BM, Global determinism of normal orthogroups, Semigroup Forum, (2017) Vol.94:336–370. SCI

  • [38] Ren MM, Zhao XZ, Wang AF, On the varieties of ai-semirings satisfying 3 x, Algebra Univers. ,  (2017) Vol.94: 395408. SCI

  • [39] Yu BM Zhao XZ, Zeng LL, A congruence on the semiring of normal tropical matrices, Linear Algebra and its Applications, (2018) Vol.555: 321335. 【SCI】

  • [40] Yu BMZhao XZ, Gan AP, Global determinism of idempotent semigroups,Communications in Algebra, (2018) Vol.46(1): 241-253. SCI

  • [41] Yu BMZhao XZ, The bands satisfying the strong isomorphism property, Semigroup Forum, (2019)Vol. 98:327337. SCI

  • [42]  Ren MM, Zhao XZ, Shao Y, The lattice of aisemiring varieties satisfying xn x and xy yx, Semigroup Forum (2020) Vol. 100: 542–567. SCI

  • [43] Jacksona M, Ren MM, Zhao XZ, Nonfinitely based ai-semirings with finitely based semigroup reducts, Journal of Algebra, (2022)Vol.611: 211–245. SCI

  • [44] Deng WN, Zhao XZ, Cheng YL, Yu,BM, On the groups associated with atropical n ×n matrix, Linear Algebra and its Applications (2022) Vol. 639: 1–17.

  •  

    3.获奖情况    

     

    1. 半环代数理论的若干研究,陕西省教育厅,2019年度陕西省科学技术奖, 二等奖,  排名第一。

    2. 半环代数理论的若干研究,陕西省教育厅,陕西高等学校科学技术奖,一等奖,排名第一  
    3. 狠抓“三基、两论、一书”,陕西省教育厅,1997年陕西省普通高等学校教学成果奖,二等奖,排名第三。  

     

  •