一、主要课题
1.主持国家自然科学基金青年项目一项(批准号:11601423)
2.主持陕西省教育厅科研计划项目一项(批准号:18JK0763)
3.主持amjs澳金沙门欢迎您本科人才培养建设项目一项(批准号:XM05232455)
4.参与国家自然科学基金项目六项(批准号:12271433;11871057;11771352;11701451;11701450;11271091)
二、主要成果
[1] Energy conservation and Onsager's conjecture for a surface growth model. Dyn. Partial Differ. Equ. 20 (2023), 299–309. (第一作者)
[2] Calderón-Zygmund theory in Lorentz mixed-norm spaces and its application to compressible fluids. Math. Nachr. 296 (2023), 5288–5304. (第一作者)
[3] Gagliardo-Nirenberg inequalities in Lorentz type spaces. J. Fourier Anal. Appl. 29 (2023), Article No. 35, 30 pp. (第一作者)
[4] On the higher derivatives estimate of the surface growth equation. Nonlinear Anal. 227 (2023), Article No. 113157, 17 pp. (第一作者)
[5] 二维耗散准地转方程在Lorentz空间的正则性准则. 纯粹数学与应用数学 39(04) (2023), 542–553. (第一作者)
[6] Decay rates of solutions to the surface growth equation and the Navier-Stokes system. Bull. Malays. Math. Sci. Soc. 45 (2022), 3085–3100. (第一作者)
[7] Leray's backward self-similar solutions to the 3D Navier-Stokes equations in Morrey spaces. SIAM J. Math. Anal. 54 (2022), 2768–2791. (通讯作者)
[8] On continuation criteria for the full compressible Navier-Stokes equations in Lorentz spaces. Acta Math. Sci. Ser. B (Engl. Ed.) 42 (2022), 671–689. (通讯作者)
[9] Energy equality in the isentropic compressible Navier-Stokes equations allowing vacuum. J. Differential Equations 338 (2022), 551–571. (第三作者)
[10] ε-Regularity criteria for the 3D Navier-Stokes equations in Lorentz spaces. J. Evol. Equ. 21 (2021), 1627–1650. (通讯作者)
[11] New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. J. Math. Fluid Mech. 22 (2020), Article No. 13, 8 pp. (第三作者)
[12] L^p resolvent estimates for variable coefficient elliptic systems on Lipschitz domains. Anal. Appl. 13 (2015), 591–609. (第一且通讯作者)
[13] L^p resolvent estimates for constant coefficient elliptic systems on Lipschitz domains. J. Funct. Anal. 267 (2014), 3262–3293. (第一作者)
[14] Modulation space estimates for Schrödinger type equations with time-dependent potentials. Czech. Math. J. 64(139) (2014), 539–566. (独立作者)
三、获奖情况
1. 2021年度amjs澳金沙门欢迎您年终考核优秀;
2. 2022年度amjs澳金沙门欢迎您师德考核优秀;
3. 2019–2020学年第二学期amjs澳金沙门欢迎您课程教学状态评估优秀;
4. 指导学生获2023年度“高教社杯”全国大学生数学建模竞赛本科组陕西赛区一等奖两项和二等奖一项;
5. 指导本科生获amjs澳金沙门欢迎您优秀毕业论文两篇;
6. 2014年度南开大学研究生优秀毕业生称号。